
A General Theory of Rank Testing

Majid M. Al-Sadoon
Universitat Pompeu Fabra & BGSE

26/09/2015
NBER-NSF Time Series Conference

M. M. Al-Sadoon A General Theory of Rank Testing NBER-NSF 2015 1 / 25



Introduction

The Literature

Rank tests are pervasive in economics: cointegration, factor models,
identification, subspace Granger causality analysis, etc.

There is a large literature in numerical analysts on the “effective” rank of a
matrix (e.g. Golub & Van Loan (1996), Björck (1996), Hansen (1998)).

Multivariate statistics mainly considers the case of i.i.d. normal data:
Hotelling (1936), Bartlett (1947), Anderson (1951), Izenman (1975),
Anderson (1999).

The econometrics literature (surveyed in Camba-Mendez & Kapetanios
(2009)) considers rank testing under general conditions. However. . .

1 The asymptotics are difficult (sometimes plainly wrong!).
2 It is not clear what relationships exist between the various rank testing

statistics.
3 It does not take full advantage of the numerical analysis literature.
4 There is no fixed–b theory of rank testing (Kiefer et. al. (2000), Vogelsang

(2001), Kiefer & Vogelsang (2002a,b, 2005)).
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Introduction

The Main Contribution

The general structure of every rank testing statistic is:

T θτ

{x1, . . . , xT }︸ ︷︷ ︸
data

, PN̂r
, P

M̂r︸ ︷︷ ︸
null space estimators

.

In fact, the vast majority are of the form: T θτ
(
B̂, Ω̂, PN̂r

, P
M̂r

)
.

The asymptotic behaviour of all rank test statistics is identical to:

T θτ

{x1, . . . , xT }, PNrT
, PMrT︸ ︷︷ ︸

population analogues

.

This is termed the plug–in principle for rank testing statistics.
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Introduction

Corollaries to the Main Contribution

The asymptotics of the infeasible statistics are much simpler.

1 We can easily obtain the behaviour of rank testing statistic under the null and
the local and global alternatives.

2 We can easily obtain the behaviour of rank test statistics under
misspecification (White, 1994).

We obtain many new rank testing statistics based on different functional
forms, different matrix decompositions (e.g. QR and Cholesky), and fixed–b
asymptotics.

We clarify the relationships between the various rank tests in the literature.
1 Example: the Cragg & Donald (1996,1997) and Kleibergen & Paap (2006)

statistics have the same local power.
2 Example: the Johansen (1988) and Kleibergen & van Dijk (1994) statistics

have the same local power.
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Preliminary Examples

Examples

Consider the regression model

yt = B
n×m

xt + εt, t = 1, . . . , T,

under the usual assumptions.

We would like to test

H0(r) : B = B∗, rank(B∗) = r

against the local alternative

HT (r) : B = B∗ +D/
√
T , rank(B∗) = r

and the global alternative

H1(r) : B = B∗, rank(B∗) > r.
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Preliminary Examples

Examples

Let B̂ and Ω̂ be MLEs of B and the long run variance of B̂.

The Anderson
(1951) trace statistic for testing the hypothesis H0(r) can be expressed as

F = Tvec′(PN̂r
B̂P

M̂r
){(P

M̂r
⊗ PN̂r

)Ω̂(P
M̂r
⊗ PN̂r

)}†vec(PN̂r
B̂P

M̂r
).

where N̂r and M̂r are related to the canonical variates of y and x.

The Johansen (1988), Cragg & Donald (1996,1997), Robin & Smith (2000),
Kleibergen and Paap (2006), and Donald, Fortuna, & Pipiras (2007)
statistics are all of this form.

They differ only in their constructions of PN̂r
and P

M̂r
.
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Preliminary Examples

Examples

For symmetric positive definite B, Donald, Fortuna, & Pipiras (2007) have
proposed:

t =

√
T tr(P

M̂r
B̂P

M̂r
)√

vec′(Im)(P
M̂r
⊗ P

M̂r
)Ω̂(P

M̂r
⊗ P

M̂r
)vec(Im)

.

All of the above (and many more) have the form

T θτ(B̂, Ω̂, PN̂r
, P

M̂r
) = T θκ(PN̂r

B̂P
M̂r
, (P

M̂r
⊗ PN̂r

)Ω̂(P
M̂r
⊗ PN̂r

)).
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Estimating the Null Spaces

Null Spaces Estimation: the Basic Idea

Numerical analysts have long known that there are problems with the
concept of rank in practice.

For example

B̂ =

[
1 1
0 ε

]
is of rank 2 for all ε 6= 0 but for small values of ε its rank is “effectively” 1.

The reduced rank approximation (RRA)

B̂ ≈ B̂1 =

[
1 1
0 0

]
allows us to estimate the null spaces of B̂ as

N̂1 =

[
0
1

]
M̂1 =

[
1
−1

]
There are numerous algorithms in the literature that can identify the effective
rank of a matrix (SVD, GSVD, WLRA, LU, QR, etc.).

M. M. Al-Sadoon A General Theory of Rank Testing NBER-NSF 2015 8 / 25



Estimating the Null Spaces

Null Spaces Estimation: the Basic Idea

Numerical analysts have long known that there are problems with the
concept of rank in practice.

For example

B̂ =

[
1 1
0 ε

]
is of rank 2 for all ε 6= 0 but for small values of ε its rank is “effectively” 1.

The reduced rank approximation (RRA)

B̂ ≈ B̂1 =

[
1 1
0 0

]
allows us to estimate the null spaces of B̂ as

N̂1 =

[
0
1

]
M̂1 =

[
1
−1

]
There are numerous algorithms in the literature that can identify the effective
rank of a matrix (SVD, GSVD, WLRA, LU, QR, etc.).

M. M. Al-Sadoon A General Theory of Rank Testing NBER-NSF 2015 8 / 25



Estimating the Null Spaces

Null Spaces Estimation: the Basic Idea

Numerical analysts have long known that there are problems with the
concept of rank in practice.

For example

B̂ =

[
1 1
0 ε

]
is of rank 2 for all ε 6= 0 but for small values of ε its rank is “effectively” 1.

The reduced rank approximation (RRA)

B̂ ≈ B̂1 =

[
1 1
0 0

]

allows us to estimate the null spaces of B̂ as

N̂1 =

[
0
1

]
M̂1 =

[
1
−1

]
There are numerous algorithms in the literature that can identify the effective
rank of a matrix (SVD, GSVD, WLRA, LU, QR, etc.).

M. M. Al-Sadoon A General Theory of Rank Testing NBER-NSF 2015 8 / 25



Estimating the Null Spaces

Null Spaces Estimation: the Basic Idea

Numerical analysts have long known that there are problems with the
concept of rank in practice.

For example

B̂ =

[
1 1
0 ε

]
is of rank 2 for all ε 6= 0 but for small values of ε its rank is “effectively” 1.

The reduced rank approximation (RRA)

B̂ ≈ B̂1 =

[
1 1
0 0

]
allows us to estimate the null spaces of B̂ as

N̂1 =

[
0
1

]
M̂1 =

[
1
−1

]

There are numerous algorithms in the literature that can identify the effective
rank of a matrix (SVD, GSVD, WLRA, LU, QR, etc.).
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Null Spaces Estimation: the Basic Idea

In summary, for a given B̂ that is converging to B∗. We may estimate the null
spaces of B∗ by the following steps:

Approximate B̂ by B̂RRAr of rank r.

Take N̂r to span the left null space of B̂RRAr .

Take M̂r to span the right null space of B̂RRAr .

Lemma

Suppose
√
T (B̂ −B∗) = Op(1), r = rank(B∗), then

1

√
T (PN̂r

− PNr
) and

√
T (P

M̂r
− PMr

) are Op(1).

2 If 0 ≤ i < r then PN̂i
B̂P

M̂i
is bounded away from zero in probability.

3 If 0 ≤ i < r and the RRA is continuous at B∗, then PN̂i
B̂P

M̂i
converges in

probability.
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Estimating the Null Spaces

Null Space Estimation in General

Figure: Convergence of a Two Dimensional Null Space Estimator in R3.
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Testing Rank

The Basic Set of Assumptions

The basic set of assumptions is:

1 B̂ ∈ Rn×m and Ω̂ ∈ Rnm×nm are estimators indexed by T .

2 Each vec(B̂) ∈ Rnm is a non–degenerate random vector.

3 Ω̂ is symmetric positive definite almost surely.

4

√
T (B̂ −B∗), Ω̂, and Ω̂−1 are Op(1).

Similar assumptions are made for testing the rank of symmetric matrices.
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Testing Rank

The Feasible and Infeasible Statistics

Let N̂r and M̂r be null space estimators based on B̂. The feasible rank test
statistic is:

T θτ
(
B̂, Ω̂, PN̂r

, P
M̂r

)

Let Nr and Mr span the null spaces of B∗. The infeasible rank test statistic is:

T θτ
(
B̂, Ω̂, PNr , PMr

)
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Testing Rank

The Plug–in Principle

The weak plug–in principle for rank test statistics is said to hold for a rank test
statistic if:

1 Under either H0(r) or HT (r), the difference between the feasible and
infeasible statistics is Op(T

−1/2).

2 Under H1(r), if the infeasible statistic has power, then so does the feasible
statistic.

It is said to satisfy the strong plug–in principle relative to the null spaces of
B∗ if additionally

3 Under H1(r), the feasible and infeasible statistics diverge at the same rate.
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Testing Rank

Testing Rank Hypotheses for General Matrices

Theorem

Under weak regularity conditions on τ , T θτ(B̂, Ω̂, PN̂r
, P

M̂r
) satisfies the weak

plug–in principle for rank test statistics. If, additionally, the RRA is continuous at
B∗, then the statistic satisfies the strong plug–in principle.

All of the rank testing statistics of the literature (and many more) satisfy the
weak plug–in principle. When the underlying RRA is continuous at the
population matrix (a feature we have conjectured to be generic for all RRAs),
also satisfy the strong plug–in principle.

The Cragg & Donald (1996,1997) and Kleibergen and Paap (2006) statistics

are asymptotically equivalent. When Ω̂ is a Kronecker product, we may add
to the list the statistics of Anderson (1951) and Robin & Smith (2000).

As there are no first–order differences between these statistics, we must look
for either higher–order difference or Monte Carlo performance for guidance.
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Testing Rank

Corollary

Corollary

Under H0(r) or HT (r), let Nr ∈ Gn×(n−r) and Mr ∈ Gm×(m−r) span the left
and right null spaces of B∗. If(√

Tvec(N ′rB̂Mr), (Mr ⊗Nr)′Ω̂(Mr ⊗Nr)
)

d→ (ξr,Ωr),

then we have

F
d→ ξ′rΩ

†
rξr t

d→ tr(mat(Dm−rξr))

(vec′(Im−r)Ωrvec(Im−r))1/2
.

Local power is simple to determine. Generalizes Cragg & Donald (1997).

Misspecification asymptotics follow from White (1994). Generalizes Robin &
Smith (2000).

Ω̂ can be a fixed–b estimator.
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Cointegration

Cointegration Caveat I: Johansen (1988,1995)

Consider the following VAR(1)

∆yt = Byt−1 + εt, t = 1, . . . , T.

Suppose {yt} is at most I(2) and B̂ is the OLS estimator of B.

Figure: Convergence of the Columns of B̂.
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Cointegration

Cointegration Caveat II: Nyblom & Harvey (2000)

Consider the multivariate local level model

yt = xt + εt xt = xt−1 + ut, t = 1, . . . , T.

Nyblom & Harvey test the rank of B̂ = Σ̂−1Γ̂ (analogue of the KPSS statistic).

Figure: Convergence of the Columns of B̂.
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Cointegration

Cointegration Summary

Null space estimation must take into account:
1 Accelerated and heterogenous rates of convergence to zero.

2 The directions of accelerated convergence can be random and T–dependent.

Null space estimators will exhibit accelerated and heterogenous rates of
convergence under H0(r) and HT (r) and continue to detect the

non–vanishing components of B̂ under H1(r).

The general plug–in principle is relative to a random sequence of matrices.

The general theory nests the standard asymptotics case, as well as the
polynomial regression and the vast majority of cointegration settings.
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Cointegration

Null Space Estimation in Cointegration

Figure: Accelerated & Heterogeneous Rates of Null Space Convergence in R3.
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Cointegration

Corollaries of the Plug–in Principle for Cointegration

(Correct Specification). The limiting behaviour of all of the statistics in:

Johansen (1988), Johansen (1991), Kleibergen & van Dijk (1994), Yang &
Bewley (1996), Quintos (1998), Gonzalo & Pitarakis (1999), Lutkepohl &
Saikkonen (1999), Kleibergen & Paap (2006), Avarucci & Velasco (2009),
Cavaliere et al. (2010a),. . .

follow from Corollaries 3 and 4 of the paper.

(Misspecification). The F statistics proposed by Johansen (1988), Kleibergen
& van Dijk (1994), and Kleibergen & Paap (2006) have the exact same
behaviour under the misspecification conditions of Caner (1998) (infinite
variance shocks), Cavaliere et al. (2010b) (heteroskedastic shocks), and
Aznar & Salvador (2002) and Cavaliere et al. (2014) (misspecified lag
length).
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Monte Carlo

Example 1

Let the data be generated as

yt = Bxt + εt

εt = 0.5εt−1 + ut (stationary)

{(x′t, u′t)′} i.i.d. N(0, I8)

B =

[
0 0 0.5 0
0 0 0 0.75
0 0 0 0
0 0 0 0

]
.

The sample consists of {(y′t, x′t)′ : t = 1, . . . , 50}.
Estimate B by OLS and the variance of B̂ by the Newey–West estimator
with bandwidth b4(50/100)1/4c = 3 for the small–b case and bandwidth 50
for the fixed–b case.

The number of replications is set to 2000.

PP plots are reported for F .
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Monte Carlo

Example 1

Figure: PP Plots for the F Statistic of Example 1.

M. M. Al-Sadoon A General Theory of Rank Testing NBER-NSF 2015 22 / 25



Monte Carlo

Example 2

Consider changing the matrix to

B =

[
0 0 0.5 0
0 0 0 0.5
0 0 0 0
0 0 0 0

]
.

Rank–1 RRAs are discontinuous at B. Therefore, we expect the different F
statistics for rank–1 to diverge at different rates.
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Monte Carlo

Example 2

Figure: PP Plots for the F Statistic of Example 2.
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Conclusion

Conclusion

This paper has developed a general and simple theory of rank testing, which
nests all existing rank tests as special cases and motivates many new ones.

Practical take away:

Blue print for constructing custom rank test statistics.
Choice of statistic: whatever is convenient.
QR and LU statistics are recommended when bootstrapping.
Fixed–b rank test statistics recommended when over–rejection is a problem.

Future research to focus on high-dimensional data.
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